

HEIDENHAIN

Length Gauges

April 2017

Length gauges from HEIDENHAIN offer

high accuracy over long measuring ranges. These sturdily made gauges are available in application-oriented versions.

They have a wide range of applications in production metrology, in multipoint inspection stations, measuring equipment monitoring, and as position measuring devices.

This brochure supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the brochure edition valid when the order is made.

Standards (EN, ISO, etc.) apply only where explicitly stated in the catalog.

Further information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces* of *HEIDENHAIN Encoders* brochure.

Contents

ngth gauges –	applications and products			
	Range of applications, application examples	; ;		4
	Length gauges from HEIDENHAIN			6
	Length gauge overview			8
hnical feature	s and mounting information			
	Measuring principles			10
	Measuring accuracy			12
	Mounting			16
	Setup			17
	Gauging force and plunger actuation			19
ecifications	Guaging fore and pranger and	Accuracy	Measuring range	
ecifications				
	HEIDENHAIN-ACANTO absolute length gauges	±1 μm ±2 μm	12 mm 30 mm	22
	HEIDENHAIN-CERTO incremental length gauges	± 0.1 μm; ± 0.03 μm* ± 0.1 μm; ± 0.05 μm*	25 mm 60 mm	24
	HEIDENHAIN-METRO incremental length gauges	± 0.2 μm	12 mm 25 mm	26
	HEIDENHAIN-METRO incremental length gauges	± 0.5 μm ± 1 μm	60 mm 100 mm	28
	HEIDENHAIN-SPECTO incremental length gauges	± 1 µm	12 mm 30 mm	30
	Incremental length gauges with low measuring forces	± 0.2 μm ± 1 μm	12 mm	32
cessories				
	Measuring contacts, switch boxes, coupling			34
	Gauge stands, ceramic suction plate, diaphragm compressor	For HEIDENHAIN-CERTO		36
	Cable-type lifter, gauge stands	For HEIDENHAIN-ACANTO, HEIDENHAIN-SPECTO), HEIDENHAIN-METRO and	38
ectrical connect	tion			
	Interface electronics			40
	Evaluation electronics			42
	Interfaces			43
	Cables and connecting elements			47
ervice				
	Calibration according to DAkkS			51

* After linear length-error compensation in the evaluation electronics

Areas of application

In quality assurance

Metrology and production control

Length gauges from HEIDENHAIN play a role in incoming goods inspection, fast dimension checking during production, statistical process control in production or quality assurance, or in any application where fast, reliable and accurate length measurement is required. Their large measuring lengths are a particular advantage: whether the part measures 5 mm or 95 mm, it is measured immediately with one and the same length gauge.

Whatever the application, HEIDENHAIN has the appropriate length gauge for the required accuracy. The **HEIDENHAIN-CERTO** length gauges offer a very high accuracy of $\pm 0.1 \ \mu m/\pm 0.05 \ \mu m^*/\pm 0.03 \ \mu m^*$ for extremely precise measurement. Length gauges from the **HEIDENHAIN-METRO** program have accuracy grades as fine as $\pm 0.2 \ \mu m$, while the **HEIDENHAIN-SPECTO** length gauges, with $\pm 1 \ \mu m$ accuracy, offer particularly compact dimensions.

* After linear length-error compensation in the evaluation electronics

Gauge block calibration and measuring device inspection

The regular inspection of measuring equipment called for by standards, and the inspection of gauge blocks in particular, necessitate a large number of reference standard blocks if the comparative measurement is performed using inductive gauges. The problem is the small measuring range of inductive gauges: they can measure length differences of only up to 10 µm. Length gauges, which offer large measuring ranges together with high accuracy, greatly simplify the calibration of measuring devices required to ensure traceability.

The length gauges of the **HEIDENHAIN**-**CERTO** program with measuring ranges of 25 mm with \pm 0.1 µm/ \pm 0.03 µm* accuracy and 60 mm with \pm 0.1 µm/ \pm 0.05 µm* accuracy are especially well suited for this task. It permits a significant reduction in the required number of reference standard blocks, and recalibrating becomes much simpler.

Thickness gauging of silicon wafers

Inspection of styli

In production metrology

Multipoint inspection apparatuses

Multipoint inspection apparatuses require durable length gauges with small dimensions. They should also have relatively large measuring ranges of several millimeters with consistent linear accuracy in order to simplify the construction of inspection devices—for example by enabling the construction of one device for several masters. A large measuring length also provides benefits in master production, because simpler masters can be used.

Thanks to their small dimensions, the **HEIDENHAIN-ACANTO** absolute length gauges, like the **HEIDENHAIN-SPECTO** incremental length gauges, are specially designed for multi-point measuring stations. They feature accuracy grades up to $\pm 1 \, \mu m$ over measuring ranges up to 30 mm. Higher accuracy requirements up to $\pm 0.2 \, \mu m$ can be met with similarly compact **HEIDENHAIN-METRO** length gauges.

Unlike inductive gauges, HEIDENHAIN-SPECTO length gauges provide stable measurement over long periods eliminating recalibration.

Position measurement

Length gauges from HEIDENHAIN are also ideal for position measurement on precision linear slides and X-Y tables. Working with measuring microscopes, for example, becomes much easier thanks to the digital readout and the flexible datum setting.

Here, length gauges from the **HEIDENHAIN-METRO** and **HEIDENHAIN-SPECTO** program come into use with large measuring

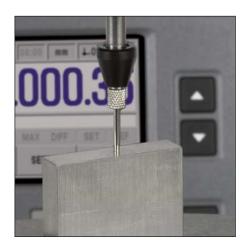
ranges of 30 mm, 60 mm or 100 mm at consistently high accuracy grades of \pm 0.5 µm or \pm 1 µm.

In this application as linear measuring device, the length gauge's fast installation in accordance with the Abbe measuring principle by its clamping shank or planar mounting surface is of special benefit.

Position measurement on an X-Y table for lens mounting

Tolerance gauging of semifinished products

Length gauges from HEIDENHAIN


A number of arguments speak for HEIDENHAIN length gauges. These include not only their technical features, but also their high quality standard and the worldwide presence of HEIDENHAIN.

Large measuring ranges

HEIDENHAIN length gauges are available with measuring lengths of 12 mm, 25 mm, 30 mm, 60 mm or 100 mm, so that you can measure very different parts in one measuring setup and avoid frequently changing setups with expensive gauge blocks or masters.

High accuracy

The high accuracy specified for HEIDEN-HAIN length gauges applies over the entire measuring length. Whether the part measures 10 mm or 100 mm, its actual dimension is always measured with the same high quality. The high repeatability of HEIDENHAIN length gauges comes into play during comparative measurements, for example in series production.

In particular HEIDENHAIN-CERTO length gauges provide high linear accuracy and offer resolution in the nanometer range.

Robust design

HEIDENHAIN length gauges are built for an industrial environment. They feature consistently high accuracy over a long period of time as well as high thermal stability. They can therefore be used in production equipment and machines.

Wide range of applications

HEIDENHAIN length gauges are suited for many applications. Automatic inspection equipment, manual measuring stations or positioning equipment—wherever lengths, spacing, thickness, height or linear motion are to be measured, HEIDENHAIN length gauges function quickly, reliably and accurately.

Absolute position measurement

The HEIDENHAIN-ACANTO length gauges operate with absolute measurement over a range of 12 mm or 30 mm and with high repeatability. Its particular advantage is that the measured value is available immediately after switch-on.

Know-how

The high quality of HEIDENHAIN length gauges is no coincidence. HEIDENHAIN has been manufacturing high-accuracy scales for over 70 years, and for many years it has developed measuring and testing devices for length and angle measurement for national standards laboratories. This know-how makes HEIDENHAIN an extraordinarily qualified partner for metrology questions.

Worldwide presence

HEIDENHAIN is represented in all important industrial countries—in most of them with wholly owned subsidiaries. Sales engineers and service technicians support the user on-site with technical information and servicing in the local language.

Length gauge overview

Accuracy	Measuring range Plunger actuation					
Absolute posit	ion measurement					
±1 μm ±2 μm	HEIDENHAIN-ACANTO					
-	By measured object					
	Pneumatic					
Incremental linear measurement						
±0.1 μm ± 0.05 μm ^{*)}	HEIDENHAIN-CERTO					
± 0.03 µm ^{*)}	By motor					
	By external coupling					
± 0.2 μm	HEIDENHAIN-METRO					
	By cable lifter or measured object					
	Pneumatic					
±0.5 μm ±1 μm	HEIDENHAIN-METRO					
	By motor					
	By external coupling					
± 1 µm	HEIDENHAIN-SPECTO					
	By measured object					
	Pneumatic					

*) After linear length-error compensation in the eva

12 mm	25 mm/30 mm	60 mm	100 mm	page
				22
AT 1218 EnDat	AT 3018 EnDat			
AT 1217 EnDat	AT 3017 EnDat			

	•	-		
				24
	CT 2501 ~ 11 μA _{PP}	CT 6001 ~ 11 μA _{PP}		
	CT 2502 ~ 11 μA _{PP}	CT 6002 \sim 11 µA _{PP}		
				26
MT 1271 □ ⊥TTL MT 1281 ~ 1 V _{PP}	MT 2571 □ ⊥ ∏L MT 2581 ─ 1 V _{PP}			
MT 1287 \sim 1 V _{PP}	MT 2587 \sim 1 V _{PP}			
				28
		ΜΤ 60 Μ 🔨 11 μΑ _{ΡΡ}	MT 101 M \sim 11 μ App	
		ΜΤ 60 K 11 μΑ _{ΡΡ}	ΜΤ 101 Κ 🤨 11 μΑ _{ΡΡ}	
				30
ST 1278 □ UTTL ST 1288 ~ 1 V _{PP}	ST 3078 TLITTL ST 3088 ~ 1 V _{PP}			
ST 1277 □ UTTL ST 1287 ~ 1 V _{PP}	ST 3077			

luation electronics

Measuring principles

Measuring standard

HEIDENHAIN length gauges are characterized by long measuring ranges and consistently high accuracy. The basis for both is the photoelectrical scanning principle.

HEIDENHAIN length gauges use material measuring standards consisting of absolute or incremental graduations on substrates of glass or glass ceramic. These measuring standards permit large measuring ranges, are insensitive to vibration and shock, and have a defined thermal behavior. Changes in atmospheric pressure or relative humidity have no influence on the accuracy of the measuring standard—which is the prerequisite for the **high long-term stability** of HEIDENHAIN length gauges.

HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.

- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 µm
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 μm) or three-dimensional chromium structures (typical graduation period of 8 μm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and finer

Along with these very fine grating periods, these processes permit a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.

The master graduations are manufactured by HEIDENHAIN on custom-built highprecision dividing engines.

Measurement procedure

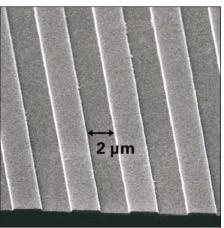
With the **incremental measuring**

method, the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the measuring standard is provided with an additional track that bears a **reference mark**. The absolute position on the scale, established by the reference mark, is gated with exactly one signal period.

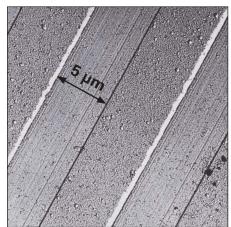
The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

With the absolute measuring method,

the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position. The absolute position information is read **from the graduated disk**, which is formed from a serial absolute code structure. A separate incremental track is interpolated for the position value and at the same time depending on the interface version—is used to generate an optional incremental signal.


Photoelectric scanning principle

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few micrometers wide, and generates output signals with very small signal periods.


The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN linear encoders use two scanning principles:

- The **imaging scanning principle** for grating periods from 20 μm and 40 μm
- The **interferential scanning principle** for very fine graduations with grating periods of, for example, 8 µm.

DIADUR phase grating with approx. 0.25 μm grating height

DIADUR graduation

Imaging principle

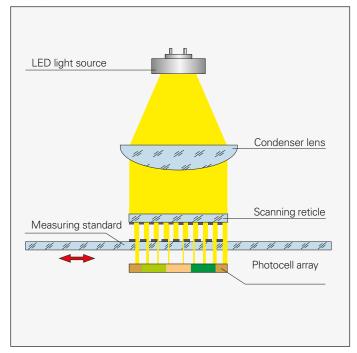
To put it simply, the imaging scanning principle functions by means of projectedlight signal generation: two scale gratings with equal or similar grating periods are moved relative to each other-the scale and the scanning reticle. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating is located here. When the two graduations move in relation to each other, the incident light is modulated: if the gaps are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. An array of photovoltaic cells converts these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle filters the light to generate nearly sinusoidal output signals.

The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and scale.

The HEIDENHAIN-ACANTO, HEIDENHAIN-SPECTO and the HEIDENHAIN-METRO length gauges of the MT 60 and MT 100 series operating according to the imaging principle.

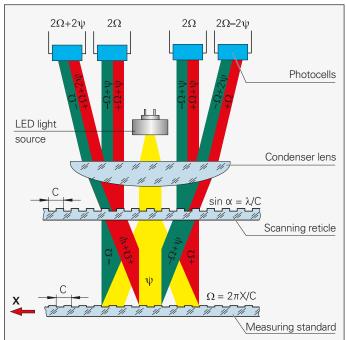
Interferential scanning principle


The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.

A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders -1, 0, and +1. with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and -1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals. A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: When the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order -1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

Interferential encoders function with grating periods of, for example, 8 µm, 4 µm and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy.


The HEIDENHAIN-CERTO and the HEIDENHAIN-METRO length gauges of the MT 1200 and MT 2500 series operating according to the interferential principle.

Interferential scanning principle (optics schematics) С

Grating period Phase shift of the light wave when passing through the scanning reticle

ψ Ω Phase shift of the light wave due to motion X of the scale

Measuring accuracy

The accuracy of linear measurement is mainly determined by:

- the quality of the graduation,
- the quality of the scanning process,
- the quality of the signal processing electronics,
- the eccentricity of the graduation to the bearing,
- the error from the scale guideway relative to the scanning unit, and
- the orthogonality of the length gauge to the bearing surface.

These factors of influence are comprised of encoder-specific error and applicationdependent issues. All individual factors of influence must be considered in order to assess the attainable **overall accuracy**.

Error specific to the measuring device

The error that is specific to the measuring device is shown in the Specifications as the **system accuracy**.

The extreme values of the **total error F** with reference to their mean value—lie over the entire measuring length within the system accuracy \pm a. They are measured during the final inspection and documented in the calibration chart.

The system accuracy includes

- the homogeneity and period definition of the graduation,
- the alignment of the graduation,
- the error of the bearing, and
- the position error within one signal period.

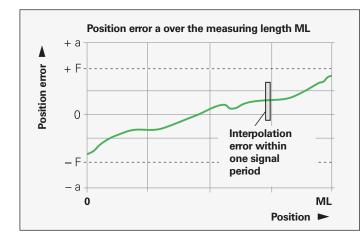
Interpolation errors within one signal period

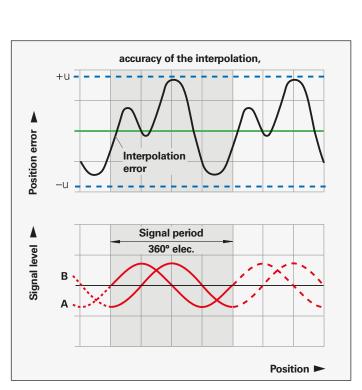
Interpolation errors within one signal period already become apparent in very small motions and in repeated measurements. They are therefore considered separately.

The interpolation errors within one signal period ±u results from the quality of the scanning and—for encoders with integrated pulse-shaping or counter electronics—the quality of the signal-processing electronics.

For encoders with sinusoidal output signals, however, the errors of the signal processing electronics are determined by the subsequent electronics.

The following individual factors influence the result:


- the size of the signal period,
- the homogeneity and period definition of
- the graduation,the guality of scanning filter structures,
- the quality of scanning filter structures,
 the characteristics of the sensors, and
- the stability and dynamics of further processing of the analog signals.


These deviations are to be considered when specifying interpolation error within one signal period.

Interpolation errors within one signal period \pm u is specified in percent of the signal period. For length gauges, the value is typically better than \pm 1% of the signal period. You will find the specified values in the Specifications.

Short-range accuracy

The short-range accuracy describes an error that occurs within a distance of $\pm 100 \ \mu m$ from a measuring point. It includes electronic and mechanical influences of the gauge on the result of measurement. The values for short-range accuracy typically lie below the specified values.

Application-dependent error

Other factors besides the system accuracy also influence the attainable total accuracy of measurement. These include in particular the ambient temperature and temperature fluctuations during measurement as well as a stable, orthogonal measuring setup.

All components included in the measuring **loop**, such as the holder for the measured object, the gauge stand with holder, and the length gauge itself, influence the result of measurement. Expansion or deformation of the measuring setup through mechanical or thermal influences adds directly to the error

Mechanical design

gauge

A stable measuring assembly must be ensured. Long lateral elements within the measuring loop are to be avoided. HEIDEN-HAIN offers a stable gauge stand as an accessory. The force resulting from the measurement must not cause any measurable deformation of the measuring loop.

Length gauges from HEIDENHAIN operate with small gauging force and have very little influence on the measuring setup.

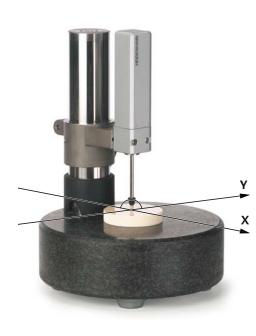
Orthogonal mounting

The length gauge is to be mounted so that its plunger is exactly orthogonal to the measured object or the surface on which it rests. Deviations result in measuring error.

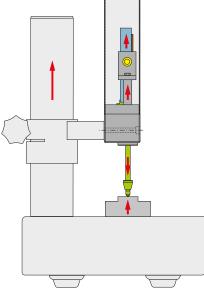
The accessory HEIDENHAIN gauge stands with holders for an 8 mm clamping shank ensure orthogonal mounting. Length gauges that provide planar mounting surfaces are to be adjusted in the direction parallel to the mounting surface (Y) to be perpendicular to the measuring plate. A quick and reliable adjustment is possible with the aid of a gauge block or a parallel block. The perpendicularity to the measuring table (X) is already ensured by the gauge stand.

Thermal characteristics

Temperature variations during measurement cause changes in length or deformation of the measuring setup. After a change in temperature of 5 K, a steel bar of 200 mm length expands by 10 µm.


Length changes resulting from a uniform deviation from the reference temperature can largely be compensated by resetting the datum on the measuring plate or a master; only the expansion of the scale and measured object go into the result of measurement.

Temperature changes during measurement cannot be ascertained mathematically. For critical components, HEIDENHAIN therefore uses special materials with low coefficients of expansion, such as are found in the HEIDENHAIN-CERTO gauge stand. This makes it possible to guarantee the high accuracy of HEIDENHAIN-CERTO even at ambient temperatures of 19 °C to 21 °C and variations of ±0.1 K during measurement.


In order to measure with complete accuracy, the length gauge should be switched on approximately 15 minutes before the first measurement.

The measuring loop: All components involved in the measuring assembly, including the length

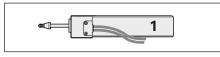
Thermal length change: Expansion of the measuring loop components as a result of heat

Orthogonal mounting

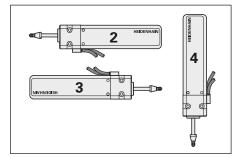
Calibration chart

All HEIDENHAIN length gauges are inspected before shipping for accuracy and proper function.

They are calibrated for accuracy during retraction and extension of the plunger. For the HEIDENHAIN-CERTO, the number of measuring positions is selected to ascertain very exactly not only the longrange error, but also the position error within one signal period.


The Quality Inspection Certificate

confirms the specified system accuracy of each length gauge. The **calibration standards** ensure the traceability—as required by EN ISO 9001—to recognized national or international standards.


For the HEIDENHAIN-METRO and HEIDENHAIN-CERTO series, a **calibration chart** documents the position error over the measuring range. It also shows the measuring step and the measuring uncertainty of the calibration measurement.

For the HEIDENHAIN-METRO the calibration chart shows the mean value of one forward and one backward measuring stroke.

The HEIDENHAIN-CERTO calibration chart shows the envelope curve of the measured error. The HEIDENHAIN-CERTO length gauges are supplied with two calibration charts, each for different operating orientations.

Operating orientation for calibration chart 1

Operating orientation for calibration chart 2

Qualitätsprüf-Zertifikat Quality Inspection Certificate MT 2587 IDN 55 350-18-4.2.2 ID 372499 SN 218355	
0.6	
0.4	
0.2	
0.2	
0,0	
0.2	
0.4	
0 5 10 15 20	
Die Messkurve zeigt die Mittelwerte der Positionsabweichungenaus Vorwärts- und Ruckwertsmessignistes F = Pos _w – Pos, Ros, = Messponition der Messikune Position error For the linear encoder: F = Pos _w – Pos, Position error For the linear encoder: F = Pos _w – Pos, Position error For the linear encoder: F = Pos _w – Pos, Position error For the linear encoder: Assition error For measurements for Position error Fosition error For Position error For Position error For Positi	osition Pos _e (mm) red position Pos _e (n
Unscherheit der Messmaschine Uncertainty of measuring machine U _{mit} = 0.03 µm + 0.06 ·10 ^m · L (L = Länge Messintervall) U _{mit} = 0.03 µm + 0.06 ·10 ^m · L (L = measurement interval length)	
Messparameter Messurement parameters	
Messschritt 1000 µm Measurement step 1000 µm	
Erster Referenzimpuls bei Messposition 23 mm First reference pulse at measured position 23 mm Relative Luftfeuchtigkeit max. 50 % Relative humidity max. 50 %	
Disses Längenmeisigenit wurde unter strengen HEIDENHAIN Qualitärsnommen hergestellt und geprüft. Die Postonsabweichung lagt bei einell Bezugstemperatur. The poston einer at a reference temperature of 20 % Des within von 20 % mennahla der Genutgieheitliksse a 0.2 µm. the accuracy grade a 0.2 µm.	
Kalibremormale Kalibremsichen Galibration standards Calibration references Jodietabilisetter He-Ne Laser 3659 PTB 02 Iodine-stabilized He-Ne Laser 3659 PTB 02	

Example

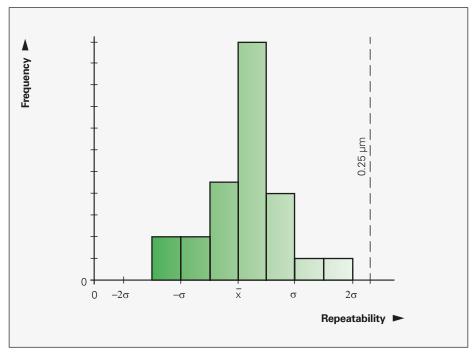
Temperature range

The length gauges are inspected at a **reference temperature** of 20 °C. The system accuracy given in the calibration chart applies at this temperature. The **operating temperature range** indicates the ambient temperature limits between which the length gauges will function properly. The **storage temperature range** of -20 °C

to 60 °C applies for the device in its packaging.

Repeatability

Whereas the system accuracy applies over the entire measuring range, for some applications the repeatability is the decisive factor. It plays an important role in repeated measurements.


Repeatability is defined in the standards DIN 32876 and DKD-R 4-3, and describes a length gauge's capability to supply very similar measured values for identical measurands and conditions. HEIDENHAIN ascertains the repeatability of the length gauges with five measurements near the lower plunger stop. The plunger is completely extended and retracted at medium speed. Since the length gauge was already in operation for at least 10 minutes before this, it is already in a stable thermal state.

The repeatability of the length gauges is usually better than the values listed in the table. The characteristic statistical distribution is shown in the diagram, using the ST 1200 as an example.

Repeatability depends on the

- combinations of materials used in the components,
- installed electronics,
- optomechanics used, and the
- bearing of the plunger.

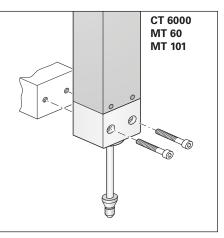
Series	Repeatability
	$<\overline{x}+2\sigma$
AT 1200	0.4 µm
AT 3000	0.8 µm
CT 2500	0.02 µm
	·
CT 6000	0.03 µm
	F
MT 101	0.04 µm
MT 1200	0.03 µm
MT 2500	0.09 µm
	0.00 µm
MT 60	0.06 µm
	0.00 μΠ
ST 1200	0.25 μm
31 1200	0.25 μm
CT 2000	0.7
ST 3000	0.7 µm

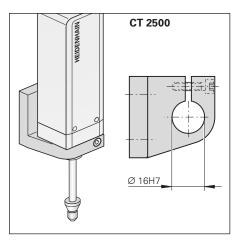
ST 1200: Statistical distribution of the repeatability

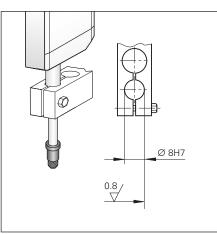
Mounting

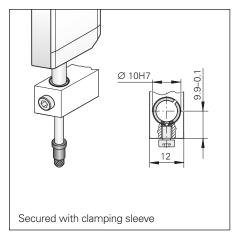
Abbe principle

HEIDENHAIN length gauges enable you to work according to the Abbe measuring principle: The measured object and scale must be in alignment to avoid additional measuring error.

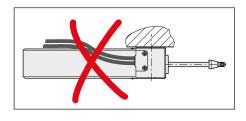

Fastening


The CT 6000, MT 60 and MT 101 length gauges are fastened by two screws onto a plane surface. This ensures a mechanically stable installation of even these large length gauges. Special holders are available for fastening the MT 60 and MT 101 to the MS 100 gauge stand for the HEIDENHAIN-METRO (see Accessories).


The CT 2500 is mounted by its standard clamping shank with 16h8 diameter. A holder is available for fastening the HEIDENHAIN-CERTO to the gauge stand (see Accessories).


The AT, ST, MT 1200 and MT 2500 length gauges feature a standard clamping shank with 8h6 diameter. These HEIDENHAIN length gauges can therefore easily be used with existing measuring fixtures and stands.

As an accessory, HEIDENHAIN offers a special clamping sleeve and screw. It facilitates fastening the length gauge securely without overstressing the clamping shank. ID 386811-01 Clamping sleeve



mm ✐⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Operating orientation for HEIDENHAIN-CERTO

The HEIDENHAIN-CERTO can be operated at any attitude. However, the mounting position with horizontal length gauge and upward facing mounting surface should be avoided because in such a case no guarantee can be made for accuracy.

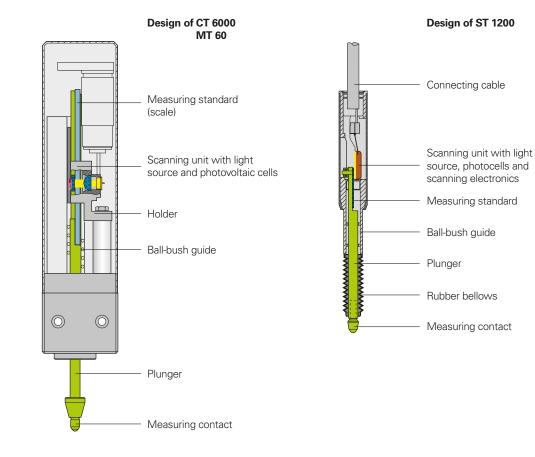
Setup

HEIDENHAIN length gauges function according to the **Abbe measuring principle**, i.e. the measuring standard and the plunger are exactly aligned. All components comprising the **measuring loop**, such as the measuring standard, plunger, holder and scanning head are designed in terms of their mechanical and thermal stability for the highest possible accuracy of the length gauge.

The **plungers** of the HEIDENHAIN length gauges are locked against rotation. Their optimally round form stays unchanged while stability and thermoconductivity remain unimpaired. They are provided with an M2.5 thread to hold measuring contacts (see *Accessories*)

The plungers of the HEIDENHAIN-ACANTO and HEIDENHAIN-SPECTO ST 1200 length gauges are protected by a rubber bellows. The **bellows** are characterized by high resistance to chemical and thermal influences and have a relatively low stiffness. Its influence on the gauge's mechanical behavior and the measuring force is therefore low.

Thermal characteristics


HEIDENHAIN length gauges have a defined thermal behavior. Since temperature variations during measurement can result in changes in the measuring loop, HEIDEN-HAIN uses special materials with low coefficients of expansion α_{therm} for the components of the measuring loop, for example in the CERTO length gauges. The scale is manufactured of Zerodur ($\alpha_{therm} \approx 0 \text{ K}^{-1}$), and the plunger and holder are of Invar ($\alpha_{therm} \approx 1 \times 10^{-6} \text{ K}^{-1}$). This makes it possible to guarantee its high measuring accuracy over a relatively large temperature range.

Acceleration

Length gauges from HEIDENHAIN feature a **sturdy design.** Even high vibration and shock loads have no negative influence on accuracy.

Shock and vibration of any kind, however, are to be avoided during measurement so as not to impair the high accuracy of the measurement. The maximum values given in the specifications for shock and vibration apply to the effect of external acceleration on the length gauge. They describe only the mechanical stability of the length gauge, and imply no guarantee of function or accuracy.

In the length gauge itself, unchecked extension of the spring-driven or noncoupled moving plunger can cause high acceleration onto the measured object or measuring plate surface. For the MT 1200 and MT 2500 series length gauges, use the cable-type lifter whenever possible (see *Accessories*). The cable lifter features adjustable pneumatic damping to limit the extension velocity to an uncritical value.

17

Plunger guideway

HEIDENHAIN length gauges are available with various plunger guides.

The plungers of the HEIDENHAIN-ACANTO length gauges work with **sliding guides.** The sliding guides have the following properties:

- Sturdiness thanks to few moving parts
- Impervious to shock and vibration
- High plunger speeds and long service life thanks to high-quality ceramic bearings
- Less sensitivity to improper clamping

The HEIDENHAIN-METRO, HEIDENHAIN-CERTO, and HEIDENHAIN-SPECTO length gauges are equipped with a **ball-bush guide**. The following are some of the basic properties of ball guides in HEIDENHAIN length gauges:

- Low friction, which makes versions of length gauges with reduced gauging force possible
- Safe plunger extension and retraction even with high radial force
- High precision of the measuring loop thanks to a guide that is free of play (the bearing and plunger are specially fitted during manufacture)

Expendable parts

HEIDENHAIN length gauges contain components that are subject to wear, depending on the application and manipulation. These include in particular the following parts:

- Guideway (tested for at least 60 million strokes*)
- Cable link for CT, MT 60 and MT 101 (tested for at least 1 million strokes*)
- Scraper rings
- Rubber bellows for AT and ST 1200
- * With CT, MT 60M and MT 101M only with actuation by switch box

Note

DIADUR is a registered trademark of DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany. Zerodur is a registered trademark of Schott Glaswerke in Mainz, Germany.

Sliding guide

Ball-bush guide

Gauging force – plunger actuation

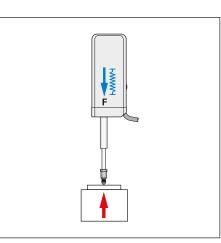
Gauging force

Gauging force is the force that the plunger exercises on the measured object. An excessively large gauging force can cause deformation of the measuring contact and the measured object. If the gauging force is too small, an existing dust film or other obstacle may prevent the plunger from fully contacting the measured object. The gauging force depends on the type of plunger actuation.

Plunger actuation by spring

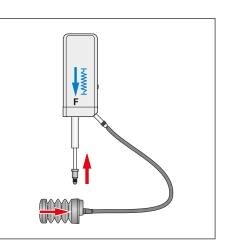
For the AT 1218, AT 3018, MT 12x1, MT 25x1, ST 12x8 and ST 30x8, the integral spring extends the plunger to the measuring position and applies the **gauging force.** In its resting position, the plunger is extended. The gauging force depends on the following criteria:

- The operating orientation
- The plunger position, i.e. the force changes over the measuring range
- The measuring direction, i.e., whether the gauge measures with extending or retracting plunger

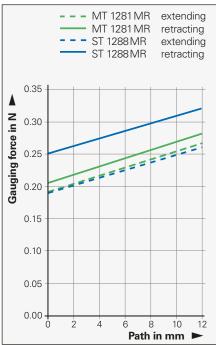

In the diagrams, the measuring force is shown over the measuring range for a retracting and extending plunger in a horizontal operating orientation.

The MT 1281 and ST 1288 length gauges are available with various gauging forces. Particularly for fragile materials this makes it possible to measure without deformation. The gauging forces can be divided into the following classes:

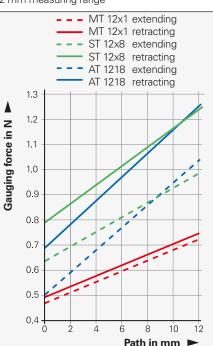
- Reduced MR: Approx. half the gauging force of the standard variant.
- Low MW: Gauging force at the beginning of the measuring range, approx 0.01 N
- Springless MG: Constant gauging force over the entire measuring range
 In order not to influence the gauging force, the variants ST 1288 MR and ST 1288 MG are provided without a rubber bellows.


Plunger actuation by measured object

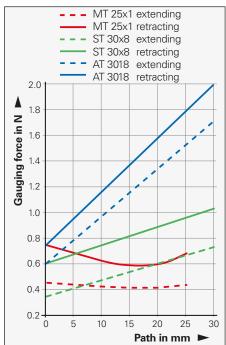
The complete gauge is moved relative to the measured object. The measurement is made with retracting plunger.


Plunger actuation via cable-type lifter (MT 12x1, MT 25x1)

Through a cable mechanism, the plunger is retracted by hand and then extended onto the measured object. The measurement is made with extending plunger.

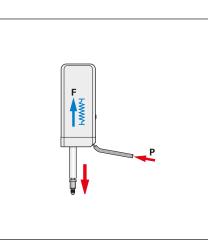


The adjustable integral pneumatic damping reduces the plunger extension speed to prevent rebounding, for example on very hard materials. This prevents measuring error through bouncing.


Special variants

12 mm measuring range

25 mm/30 mm measuring range



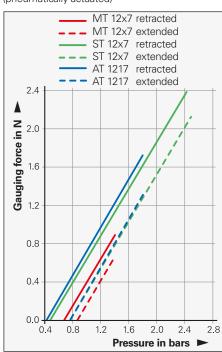
Pneumatic plunger actuation

The pneumatically actuated plungers of the AT 1217, AT 3017, MT 1287, MT 2587, ST 12x7 and ST 30x7 length gauges are extended by the application of compressed air. When the air connection is ventilated, the integral spring retracts the plunger. to a protected resting position within the housing.

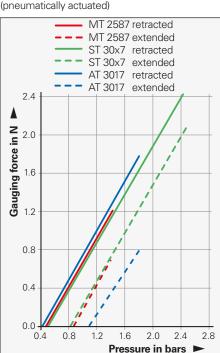
The **gauging force** can be adjusted to the measuring task through the level of air pressure. At constant pressure, it depends on the operating orientation and the plunger position.

The diagrams show the respective gauging force for a horizontal operating orientation depending on the working pressure applied with the plunger fully extended and fully retracted. These are approximate values that are subject to changes due to tolerances and depend on seal wear. The working pressure defines the pressure range of the first complete plunger extension up to the maximum specified range.

Note


The compressed air introduced directly into the length gauges must be properly conditioned and must comply with the following quality classes as per **ISO 8573-1** (1995 edition):

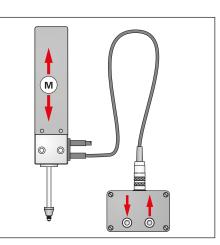
- Solid contaminant: Class 1 (max. particle size 0.1 μm and max. particle density 0.1 mg/m³ at 1 \cdot 10 5 Pa)
- Total oil content: Class 1 (max. oil concentration 0.01 mg/m³ at 1 · 10⁵ Pa)
- Max. pressure dew point: Class 4 but with reference conditions of +3 °C at $2 \cdot 10^5$ Pa


HEIDENHAIN offers the **DA 400 compressed air unit** for purifying compressed air. The minimum flow rate is 10 l/min.

For more information, ask for our *DA 400* Product Information Sheet.

12 mm measuring range (pneumatically actuated)

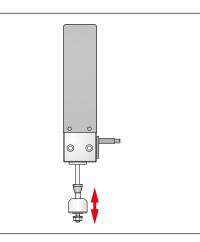
25 mm/30 mm measuring range (pneumatically actuated)


The diagrams apply for the **horizontal operating orientation**, except for special variants. The following compensation values are to be taken into account for other operating orientations.

Model	Operating orientation vertical		
	Upward	Downward	
AT 121x	-0.12 N	+0.12 N	
AT 301x	-0.18 N	+0.18 N	
MT 12xx	-0.13 N	+0.13 N	
MT 1281MR	-	+0.13 N	
MT 25x1	-0.17 N	+0.17 N	
MT 2587	-0.19 N	+0.19 N	
ST 12x7	-0.07 N	+0.07 N	
ST 12x8	-0.08 N	+0.08 N	
ST 30xx	-0.11 N	+0.11 N	

Motorized plunger actuation

The CT 2501, CT 6001, MT 60 M and MT 101 M length gauges feature an integral motor that moves the plunger. It is operated through the switch box either by push button or over the connection for external actuation. The plungers of the CT 2501, CT 6001, and MT 60 M length gauges must not be moved by hand if the switch box is connected.


The **gauging force** of the CT 2501, CT 6001, and MT 60 M motorized length gauges is adjustable in three stages through the switch box. The force remains constant over the measuring range but depends on the operating orientation. Regardless of the operating orientation whether it measures vertically downward (with the SG 101 V switch box) or horizontally (with the SG 101 H switch box)—the MT 101 M exercises a constant gauging force.

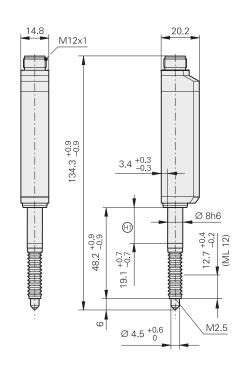
	CT 2501 CT 6001	MT 60M	MT 101 M
Gauging force	By motor	By motor	By motor
Vertically downward	0.85 N/1 N/1.45 N	1 N/1.25 N/1.75 N	0.7 N with SG 101V
Vertically upward	-/-/0.55 N	-/-/0.85 N	-
Horizontal	–/0.55 N/1 N	-/0.8 N/1.3 N	0.7 N with SG 101 H

External plunger actuation by coupling

For the CT 2502, CT 6002, MT 60K, MT 101 K and special versions (without spring) of the MT 1200, MT 2500 and ST 1288, the plunger is freely movable. For position measurement, the plunger is connected by a coupling with a moving machine element. The force needed to move the plunger is specified as the required **moving force.** It depends on the operating orientation.

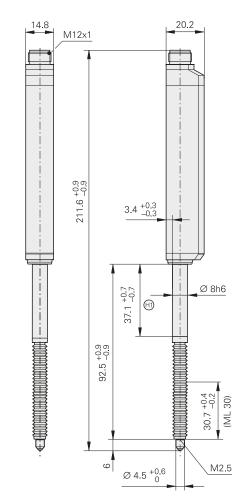
	CT 2502 CT 6002	MT 60K	MT 101 K	MT 1271 □ □ □ □ □ MT 1281 ~ 1 V _{PP}	MT 2571 □ □ □ □ □ MT 2581 ~ 1 V _{PP}	ST 1288
Gauging force	Moving force ¹⁾	Moving force ¹⁾	Moving force ¹⁾	-	-	-
Vertically downward	0.45 N	0.4 N	1.7 N	0.13 N	0.17 N	0.2 N
Vertically upward	0.55 N	0.55 N	2 N	-	-	_
Horizontal	0.15 N	0.15 N	0.4 N	-	-	-

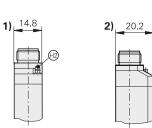
¹⁾ Force required to move the plunger or the force of its weight


HEIDENHAIN-ACANTO

Absolute length gauges with EnDat interface

- Online diagnostics
- Protection up to IP67
- Serial data transmission with CRC


HEIDENHAIN



AT 3000

HEIDENHAIN

Dimension changes under max. pressure (1.8 bars)

	1)	2)
AT 1217	14.815.1	20.219.9
AT 3017	14.815.2	20.219.8

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

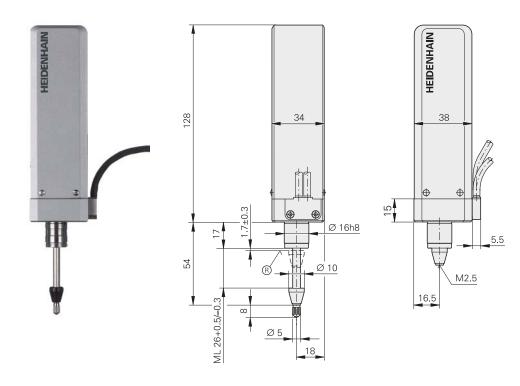
ML = Measuring length

Clamping area

0 = Air connection for 2 mm tube

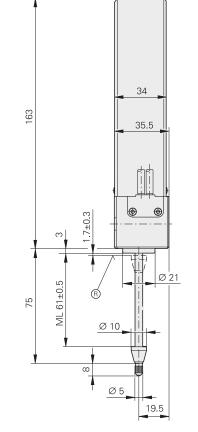
Mechanical data	AT 1218	AT 3018	AT 1217	AT 3017	
Plunger actuation Position of plunger at rest	By measured object Extended		Pneumatic Retracted		
Measuring standard	DIADUR grating on glass; grating period 188.4 µm				
System accuracy	±1 μm ±2 μm		±1 µm	±2 μm	
Position error per signal period	≤ ± 0.7 μm				
Measuring range	12 mm	30 mm	12 mm	30 mm	
Working pressure	-		0.7 bar to 1.8 bars	1.1 bars to 1.8 bars	
Mech. permissible traversing speed	≤ 80 m/min ≤ 120 m/min		≤ 80 m/min	≤ 120 m/min	
Radial force	\leq 0.5 N (mechanically permissible)				
Fastening	Clamping shank Ø 8ł	า6			
Operating orientation	Any				
Vibration 55 Hz to 2000 Hz Shock 11 ms	$\leq 100 \text{ m/s}^2 \text{ (EN 60 068-2-6)} \leq 500 \text{ m/s}^2 \text{ (EN 60 068-2-27)}$				
Operating temperature	10 °C to 40 °C; reference temperature 20 °C				
Protection EN 60529	IP67		IP64 ¹⁾ IP67 upon request	IP64 ¹⁾	
Mass without cable	80 g 100 g		80 g	100 g	

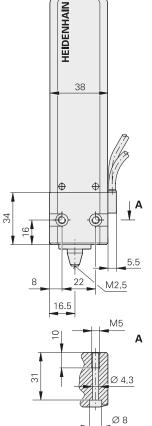
¹⁾ IP67 with sealing air


Electrical data	EnDat				
Interface	EnDat 2.2				
Ordering designation	EnDat 22				
Measuring step	23 nm 368 nm 23 nm 368 nm				
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 8 MHz				
Electrical connection	M12 flange socket (male), 8-pin				
Cable length	≤ 100 m with HEIDENHAIN cable				
Voltage supply	DC 3.6 V to 14 V				
Power consumption (max.)	$3.6 V: \le 550 \text{ mW}$ 14 V: $\le 650 \text{ mW}$				
Current consumption (typical)	5 V: 80 mA (without l	oad))			

HEIDENHAIN-CERTO

Incremental length gauges with $\pm 0.1 \ \mu m/\pm 0.05^{11} \ \mu m^*/\pm 0.03 \ \mu m^{11}$ accuracy • For very high accuracy


- Low thermal expansion through thermally invariant materials
- High-precision ball bearing guide

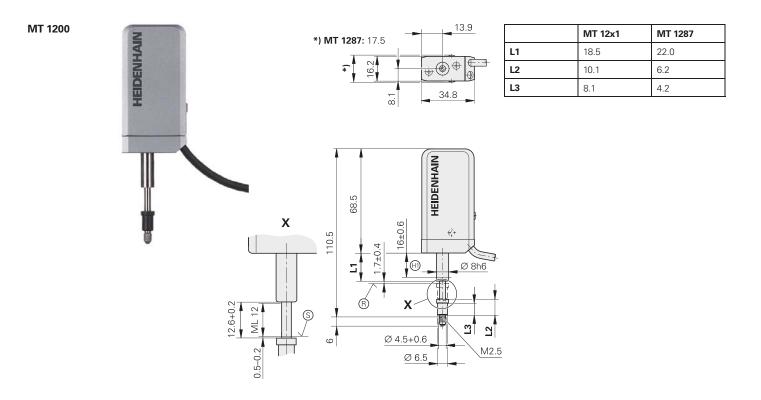


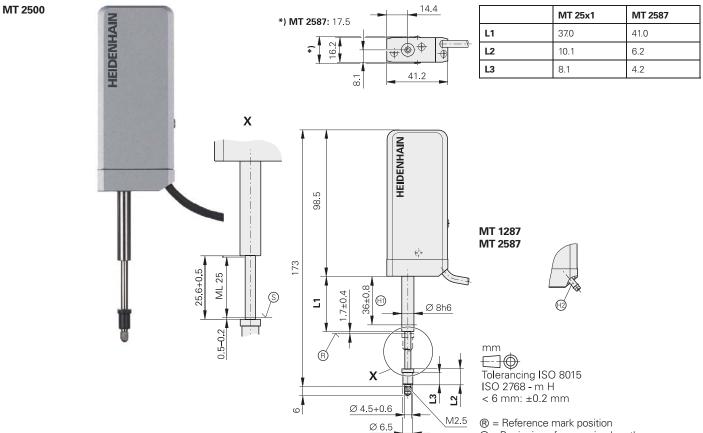
CT 6000

mm €]⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

R = Reference mark position

Mechanical data	CT 2501	CT 6001	CT 2502	CT 6002
Plunger actuation	By motor		Via coupling with mo	ving machine part
Measuring standard	DIADUR phase gratir	ng on Zerodur glass cer	ramic; grating period 4	μm
System accuracy at 19 °C to 21 °C	± 0.1 μm, ± 0.03 μm ¹⁾	± 0.1 μm, ± 0.05 μm ¹⁾	± 0.1 μm, ± 0.03 μm ¹⁾	± 0.1 μm, ± 0.05 μm ¹⁾
Position error per signal period	≤ ±0.02 µm		•	
Short-range accuracy typically	0.03 μm			
Reference mark	One, approx. 1.7 mm below upper stop			
Measuring range	25 mm	60 mm	25 mm	60 mm
Radial force	\leq 0.5 N (mechanically	v permissible)		
Fastening	Clamping shank Ø 16h8	Plane surface	Clamping shank Ø 16h8	Plane surface
Operating orientation	Any required (for pref	erred operating orienta	ation, see <i>Mounting</i>)	
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)			
Operating temperature	10 °C to 40 °C; reference temperature 20 °C			
Protection EN 60529	IP50			
Mass without cable	520 g	700 g	480 g	640 g


Electrical data	CT 2501	CT 6001	CT 2502	CT 6002	
Interface	~ 11 μApp				
Signal period	2 µm				
Measuring velocity	\leq 24 m/min (depending on the subsequent electronics) \leq 12 m/min with the ND 28x display unit				
Electrical connection*	 Cable 1.5 m with D-sub connector (male), 15-pin Cable 1.5 m with M23 connector (male), 9-pin Interface electronics integrated in connector 				
Cable length	≤ 30 m				
Voltage supply	DC 5 V ±0.25 V/< 170	mA	DC 5V ±0.25V/< 120) mA	


Required accessories*	For CT 2501	For CT 6001
Switch box	SG 25M	SG 60 M

* Please select when ordering
 ¹⁾ After linear length-error compensation in the evaluation electronics
 ²⁾ Force required to move the plunger or the force of its weight

HEIDENHAIN-METRO

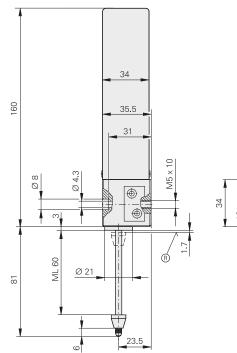
- Incremental length gauges with $\pm 0.2 \ \mu m$ accuracy
- High repeatability
- Various gauging force variants
- Various possibilities for plunger actuation

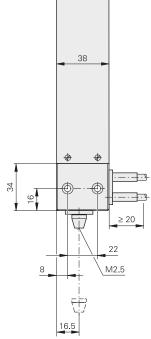
Reference mark position
 Beginning of measuring length
 Clamping area

Mechanical data	MT 1271 TL MT 1281 ~ 1 V _{PP}	MT 2571 TL MT 2581 ~ 1 VPP	MT 1287 \sim 1 V _{PP}	MT 2587 \sim 1 V _{PP}
Plunger actuation Position of plunger at rest	By cable or measured Extended	l object	Pneumatic Retracted	
Measuring standard	DIADUR phase gratin	g on Zerodur glass cer	amic; grating period 4	um
System accuracy	±0.2 μm			
Position error per signal period	≤ ±0.02 µm			
Short-range accuracy typically	0.03 µm	0.04 µm	0.03 µm	0.04 µm
Reference mark	\approx 1.7 mm below upper stop			
Measuring range	12 mm	25 mm	12 mm	25 mm
Working pressure	- 0.9 bar to 1.4 bars			
Radial force	\leq 0.8 N (mechanically permissible)			
Fastening	Clamping shank Ø 8h6			
Operating orientation	Any; for version without spring and with low gauging force: vertically downward			lly downward
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)			
Operating temperature	10 °C to 40 °C; reference temperature 20 °C			
Protection EN 60 529	IP50		IP67 (with sealing air)	
Mass without cable	100 g	180 g	110 g	190 g

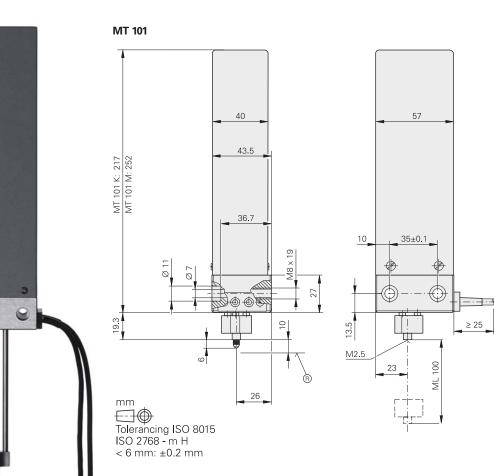
Electrical data	MT 1271 MT 2571		MT 128x MT 258x
Interface			\sim 1 V _{PP}
Integrated interpolation*	5-fold	10-fold	-
Signal period	0.4 µm	0.2 µm	2 µm
Mech. permissible traversing speed	≤ 30 m/min		
Edge separation a at scanning frequency*/traverse speed ¹) 200 kHz ≤ 24 m/min 100 kHz ≤ 12 m/min 50 kHz ≤ 6 m/min 25 kHz ≤ 3 m/min	≥ 0.23 µs – ≥ 0.48 µs ≥ 0.23 µs ≥ 0.98 µs ≥ 0.48 µs – ≥ 0.98 µs		_
Electrical connection* (interface electronics integrated in connector)	Cable 1.5 m with D-sub connector (male), 15-pin		Cable 1.5 m with • D-sub connector (male), 15-pin • M23 connector (male), 12-pin
Cable length	≤ 30 m with HEIDEN	HAIN cable	·
Voltage supply	DC 5 V ± 0.5 V/< 160	mA (without load)	DC 5 V ±0.25 V/< 130 mA
* Please select when ordering ¹⁾ At the corresponding cutoff or scanning frequency			

HEIDENHAIN-METRO


Incremental length gauges with ±0.5 μ m/±1 μ m accuracy


MT 60

- Large measuring ranges
- Plunger actuation by motor or coupling
- Ball-bush guided plunger

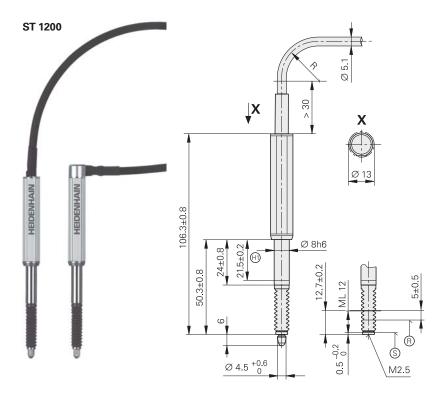

MT 60M

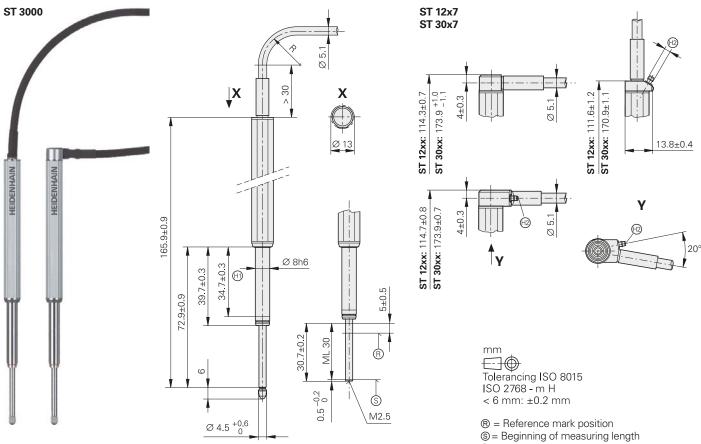
MT 101 M

0

Mechanical data	MT 60M	MT 101 M	MT 60K	MT 101 K	
Plunger actuation	By motor		Via coupling with mo	Via coupling with moving machine part	
Measuring standard	DIADUR grating on s	ilica glass; grating perio	od 10 μm		
System accuracy	± 0.5 µm	±1µm	± 0.5 µm	± 1 µm	
Position error per signal period	≤ ± 0.1 µm		1		
Reference mark	\approx 1.7 mm from top	\approx 10 mm from top	\approx 1.7 mm from top	\approx 10 mm from top	
Measuring range	60 mm	100 mm	60 mm	100 mm	
Radial force mech. permissible	≤ 0.5 N	≤ 2 N	≤ 0.5 N	≤ 2 N	
Fastening	Plane surface	1	1		
Operating orientation	Any	Vertically downward with SG 101V Horizontal with SG 101 H	Any		
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	10 °C to 40 °C; reference temperature 20 °C				
Protection EN 60529	IP50				
Mass without cable	700 g	1400 g	600 g	1200 g	

Electrical data	MT 60M	MT 101 M	MT 60K	MT 101 K
Interface	∼ 11 µАрр			
Signal period	10 µm			
Measuring velocity	≤ 18 m/min	≤ 60 m/min	≤ 18 m/min	≤ 60 m/min
Electrical connection*	Cable, 1.5 m, with D-sub connector (male), 15-pin or with M23 connector (male), 9-pin			
Cable length	≤ 30 m with HEIDENHAIN cable			
Voltage supply	DC 5 V ±0.25 V			
Current consumption	< 120 mA < 70 mA			


Required accessories*	For MT 60 M	For MT 101 M
Switch box	SG 60 M	<i>Vertical orientation:</i> SG 101 V <i>Horizontal orientation:</i> SG 101 H
power supply unit	-	Required (see Accessories)


* Please select when ordering

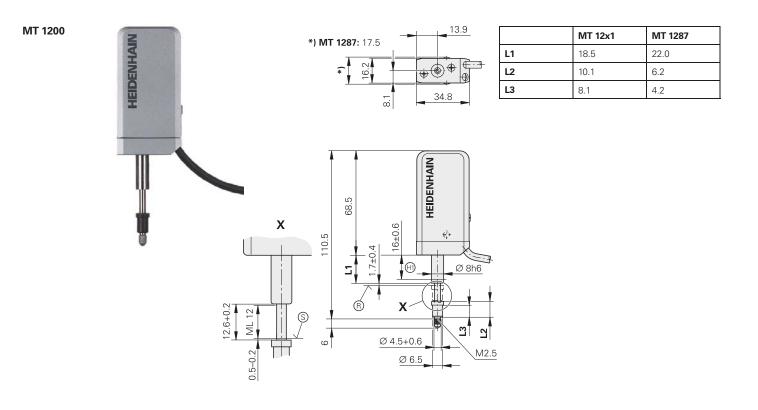
HEIDENHAIN-SPECTO

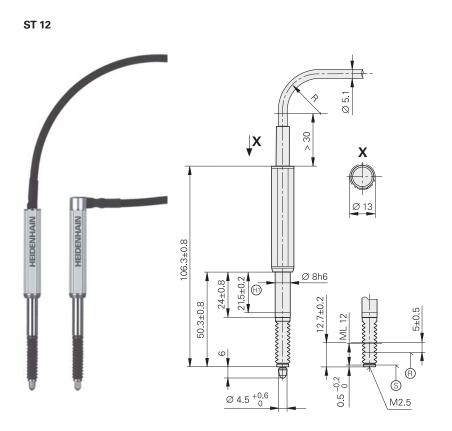
Incremental length gauges with ±1 μm accuracy • Very compact dimensions

- Protection up to IP67
- Especially durable ball-bush guide

(1) = Clamping area

Mechanical data	ST 1278 TUTTL ST 1288 ~ 1 V _{PP}	ST 3078 TUTTL ST 3088 ~ 1 V _{PP}	ST 1277 TU TTL ST 1287 1 V _{PP}	ST 3077 TL TTL ST 3087 ~ 1 V _{PP}	
Plunger actuation Position of plunger at rest	By measured object Extended		Pneumatic Retracted		
Measuring standard	DIADUR grating on g	lass; grating period 20	μm		
System accuracy	± 1 µm				
Position error per signal period	≤ ± 0.2 µm				
Short-range accuracy typically	0.3 μm				
Reference mark	≈ 5 mm below upper stop				
Measuring range	12 mm	30 mm	12 mm	30 mm	
Working pressure	-	l	0.8 bar to 2.5 bars	5	
Radial force	\leq 0.8 N (mechanically	v permissible)	I		
Fastening	Clamping shank Ø 8h	16			
Operating orientation	Any				
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	10 °C to 40 °C; reference temperature 20 °C				
Protection EN 60529	IP67/IP64 IP 64				
Mass without cable	40 g	50 g	40 g	50 g	

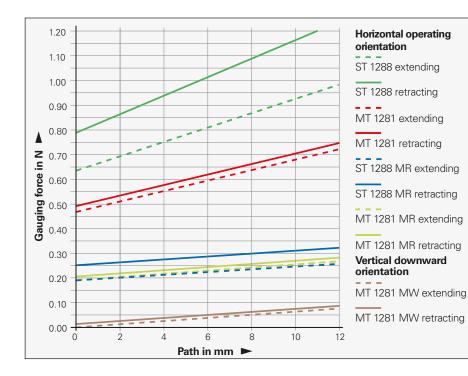

Electrical data	ST 127x ST 307x		ST 128x ST 308x
Interface			\sim 1 V _{PP}
Integrated interpolation*	5-fold	10-fold	-
Signal period	4 µm	2 µm	20 µm
Edge separation a at scanning frequency*/traverse speed ²)100 kHz \leq 72 m/min ¹)50 kHz \leq 60 m/min25 kHz \leq 30 m/min	≥ 0.48 μs ≥ 0.98 μs ≥ 1.98 μs	≥ 0.23 µs ≥ 0.48 µs ≥ 0.98 µs	_
Electrical connection*	Cable 1.5 m with D-sub connector (male), 15-pin (integrated interface electronics)		Cable 1.5 m with • D-sub connector (male), 15-pin • M23 connector (male), 12-pin
Cable outlet*	Axial or radial		
Cable length	≤ 30 m with HEIDENHAIN cable		
Voltage supply	DC 5 V ±0.5 V		
Current consumption	< 100 mA (without load)		< 55 mA
* Please select when ordering	¹⁾ Mechanically limite	d ²⁾ At a co	rresponding cutoff or scanning frequency


HEIDENHAIN length gauges with low measuring forces

Incremental length gauges

Ball-bush guided plunger

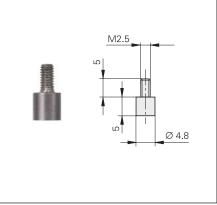
Same specifications as for standard products



mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Reference mark position
 Beginning of measuring length
 Clamping area

Mechanical data	MT 1281	ST 1288	
Plunger actuation	By cable or measured object	By measured object	
Measuring standard	DIADUR phase grating on Zerodur glass ceramic; grating period 4 µm	DIADUR grating on glass; grating period 20 µm	
System accuracy	± 0.2 μm	±1µm	
Short-range accuracy typically	0.03 μm	0.3 μm	
Measuring range	12 mm		
Fastening	Clamping shank Ø 8h6		
Protection EN 60529	IP50	IP50	
Interface	\sim 1 V _{PP}		
Signal period	2 μm	20 µm	


_	Version	Gauging force	Operating orientation
MT 1281	Default	0.75 N ¹⁾	Any desired operating orientation
	MR	0.25 N ¹⁾	Vertically downward and horizontal
	MW	0 N ¹⁾	Vertically downward
	MG	0.13 N ²⁾	Vertically downward
ST 1288	Default	0.65 N ¹⁾	Any desired operating orientation
	MR	0.4 N ¹⁾	Any desired operating orientation
	MG	0.2 N ²⁾	Vertically downward

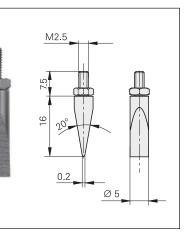
The diagram applies for the **horizontal** operating orientation, except for MT 1281 MW. For compensation values for other orientations, see p. 20.

With nearly completed plunger extension
 Over the entire measuring range

Accessories Measuring contacts

Ball-type contact **Domed contact** Flat contact Steel ID 202504-01 Carbide ID 229232-01 Steel ID 270922-01 Carbide ID 202504-02 Carbide ID 202506-01 ID 202504-03 Ruby M2.5 M2.5 10 ic 10 Ø 3.2 ഹ Ø 4.8 Ø 4.5

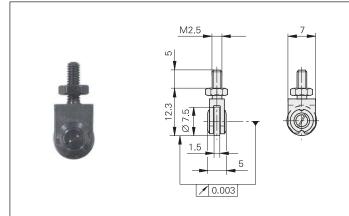
Pin-type contact


Steel

ID 202505-01

Steel

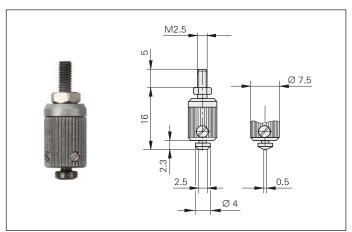
ID 202503-01



mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Roller contact, steel

For a low-friction contact with moving surfaces


Crowned	ID 202502-03
Cylindrical	ID 202502-04

Adjustable contact, carbide

For exact parallel alignment to the measuring plate surface

Flat Knife-edged ID 202507-01 ID 202508-01

Knife-edge contact

Switch boxes, coupling

Switch boxes for CT 2501, CT 6001, MT 60 M, MT 101 M

Switch boxes are required for length gauges with motorized plunger actuation. The plunger is controlled through two push buttons or by external signal. The SG 25 M and SG 60 M switch boxes can adjust the gauging force in three stages.

SG 25 M ID 317436-01

ID 31/436-01

SG 60M ID 317436-02

SG 101V¹⁾ For the MT 101 M in vertical operation ID 361140-01

SG 101 H¹⁾ For the MT 101 M in horizontal operation ID 361140-02

Connector (female), 3-pin For external operation of the switch box ID 340646-05

¹⁾ Separate power supply required

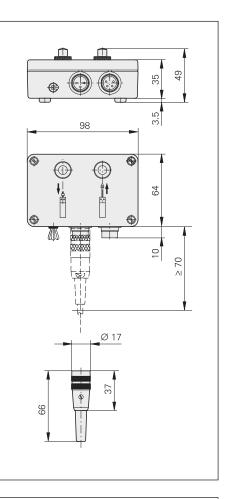
Power adapter for SG 101 V/H An adapter connected to the switch box powers the MT 101 M.

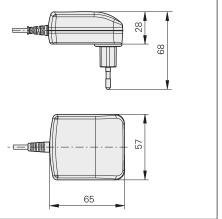
Voltage range AC 100 V to 240 V Exchangeable plug adapter (European and U.S. American connectors included in delivery)

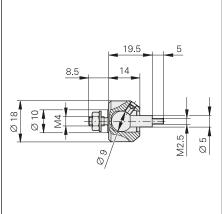
ID 648029-01

Coupling

For connecting the plunger of the length gauge (specifically for the MT 60K, MT 101 K, CT 2502 and CT 6002) to a moving machine element


ID 206310-01

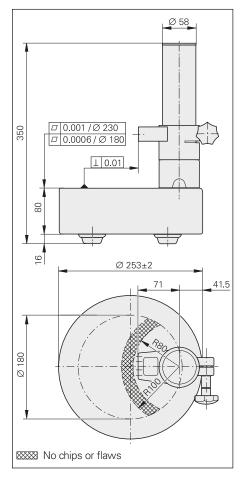

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm



Accessories for HEIDENHAIN-CERTO Gauge stand

CS 200 gauge stand

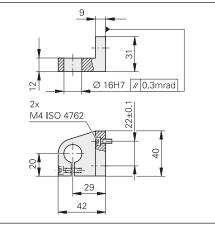
For length gauges CT 2501* CT 6001


ID 221310-01

Overall height Base Column Mass 350 mm Ø 250 mm Ø 58 mm 15 kg

With special holder

The flatness of the CS 200 is determined with the aid of a Fizeau interferometer.



Holder for CS 200

For the CT 2501 with \varnothing 16 mm clamping shank

ID 324391-01

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Ceramic suction plate, diaphragm pump

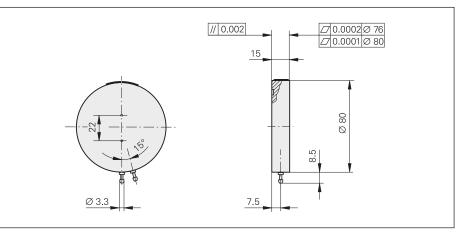
Ceramic suction plate

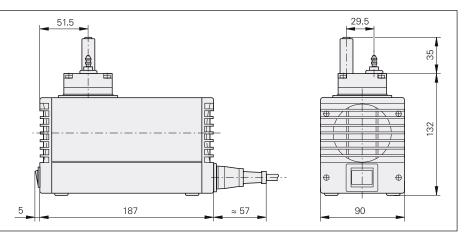
Wear-resistant working surface with high surface quality specifically for inspecting gauge blocks

ID 223100-01

The gauge block (class 1 or 2)—or any other object with a plane surface—is drawn by suction onto the top of the ceramic plate. The ceramic plate is likewise drawn to the granite base and held in place through negative gauge pressure.

Parts for connecting the ceramic suction plate with the diaphragm pump are among the items supplied:


Pressure tubing 3 m T-joint Connecting piece


Diaphragm pump

Source of suction for drawing the measured object and ceramic suction plate

Power consumption20 WMass2.3 kgLine voltage230 V AC/50 HzID 754220-0120 V AC/50 Hz

Line voltage ID 754220-02 115 V AC/60 Hz

Accessories for HEIDENHAIN-ACANTO, HEIDENHAIN-METRO and HEIDENHAIN-SPECTO Cable-type lifter, gauge stands

Cable lifter

For manual plunger actuation of MT 1200 and MT 2500.

The integral pneumatic damping reduces the plunger extension speed to prevent bouncing, for example on very hard materials.

AT¹⁾

ST¹⁾ MT 1200¹⁾ MT 2500¹⁾ MT 60 M MT 101 M

346 mm

Ø 250 mm

Ø 58 mm

18 kg

ID 257790-01

MS 200 gauge stand

For length gauges

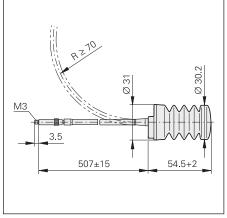
ID 244154-01

Total height

¹⁾ With special holder

Holder for MS 200

ID 324391-02


For mounting the length gauges with \emptyset 8 mm clamping shank,

e.g. AT, ST, MT 1200, MT 2500

Base Column

Mass



Clamping sleeve

For length gauges AT, ST MT 1200 MT 2500 For fixing the length gauge reliably without overloading the 8h6 clamping shank. Consisting of: Sleeve, clamping screw ID 386811-01 (1 piece) ID 386811-02 (10 pieces)

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

MS 45 gauge stand

For length gauges	AT
	ST
	MT 1200

ID 202162-02

Overall height	196.5 mm
Measuring plate	Ø 49 mm
Column	Ø 22 mm
Mass	2.2 kg

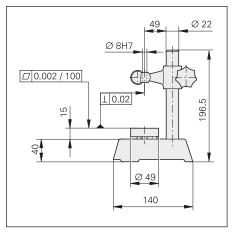
MS 100 gauge stand

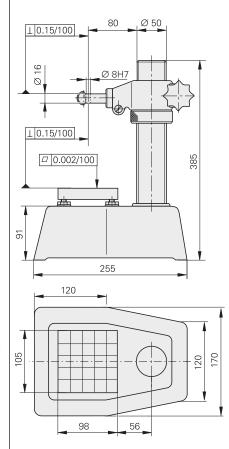
For length gauges

ST MT 1200 MT 2500 MT 60 M¹⁾ MT 101 M¹⁾

AT

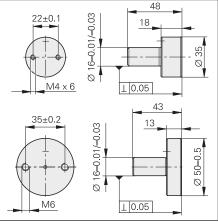
MT 2500


ID 202164-02


Overall height
Measuring plate
Column
Mass

385 mm 100 mm x 115 mm Ø 50 mm 18 kg

¹⁾ With special holder


Holder for MS 100

For mounting the MT 60 M ID 207479-01

For mounting the MT 101 M ID 206260-01

mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or if additional interpolation of the signals is necessary.

Input signals of the interface electronics

Interface electronics from HEIDENHAIN can be connected to encoders with sinusoidal signals of 1 V_{PP} (voltage signals) or 11 μ A_{PP} (current signals). Encoders with the serial interfaces EnDat or SSI can also be connected to various interface electronics.

Output signals of the interface electronics

Interface electronics with the following interfaces to the subsequent electronics are available:

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc Serial Interface
- Mitsubishi high speed interface
- Yaskawa Serial Interface
- Profibus
- Profinet

Interpolation of the sinusoidal input signals

In addition to being converted, the sinusoidal encoder signals are also interpolated in the interface electronics. This permits finer measuring steps and, as a result, higher control quality and better positioning behavior.

Formation of a position value

Some interface electronics have an integrated counting function. Starting from the last reference point set, an absolute position value is formed when the reference mark is traversed, and is transferred to the subsequent electronics.

Box design

Plug design

Version for integration

Top-hat rail design

Outputs		Inputs		Design – Protection class	Interpolation ¹⁾ or subdivision	Model
Interface	Qty.	Interface	Qty.		SUDUIVISION	
	1	~ 1 V _{PP}	1	Box design – IP65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
					Without interpolation	IBV 600
					25/50/100/200/400-fold	IBV 660 B
				Plug design – IP40	5/10/20/25/50/100-fold	APE 371
				Version for integration –	5/10-fold	IDP 181
				IP00	20/25/50/100-fold	IDP 182
		∕→ 11 μA _{PP}	1	Box design – IP65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
					Without/5-fold	EXE 602 E
					25/50/100/200/400-fold	EXE 660 B
				Version for integration – IP00	5-fold	IDP 101
	2	~ 1 V _{PP}	1	Box design – IP65	2-fold	IBV 6072
✓ 1 V _{PP} Adjustable					5/10-fold	IBV 6172
					5/10-fold and 20/25/50/100- fold	IBV 6272
EnDat 2.2	1	~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192
				Plug design – IP40	≤ 16384-fold subdivision	EIB 392
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP65	_	EIB 2391 S
Fanuc Serial	1	~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 F
Interface				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592 F
Mitsubishi high		~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 M
speed interface				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 M
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592 M
Yaskawa Serial Interface	1	EnDat 2.2 ²⁾	1	Plug design – IP40	_	EIB 3391Y
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	_	PROFIBUS Gateway
PROFINET	1	EnDat 2.1	1	Top-hat rail design	_	PROFINET Gateway

²⁾ Only LIC 4100, measuring step 5 nm; LIC 2100, measuring step 50 nm and 100 nm

Evaluation electronics units For measuring and testing tasks

Evaluation electronics from HEIDENHAIN combine measured value acquisition with intelligent, application-specific further processing. They are used in many metrological applications, ranging from simple measuring stations to complex inspection systems with multiple measuring points.

Evaluation units feature interfaces for various encoder signals. They include units with integrated display—which can be used independently—and units that require a PC for operation. The overview table lists evaluation electronics for measuring and testing tasks. You can find comprehensive information, including on other evaluation units for 2-D and 3-D measuring tasks, on the Internet or in the brochure *Evaluation Electronics for Metrology Applications*.

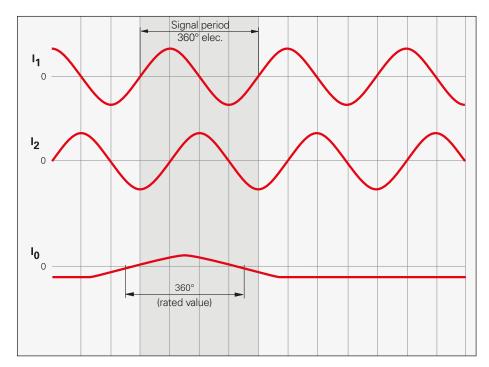
Digital readouts for manual machine tools optimally support the operator with cycles for milling, drilling and turning. You can find these digital readouts on the Internet or in the brochure *Digital Readouts and Linear Encoders for Manually Operated Machine Tools.*

Unit with integrated display – e.g. ND 2100 G GAGE-CHEK

	Functions	Input		Interpolation or subdivision	Output	Model
		Interface	Qty.	or subalvision	Interface	
ND 200 Evaluation electronics	-	~ 1 V _{PP} ~ 11 μΑ _{PP}	1	4096-fold	RS-232-C/V-24 USB	ND 280
 for Measurement equipment Adjustment and inspection equipment SPC inspection stations 	 Metrological and statistical functions (sorting and tolerance checking, measurement series, SPC) Second encoder¹⁾ for sum/difference display, temperature compensation 	EnDat	Up to 2		Ethernet ¹⁾	ND 287
ND 2100 G GAGE- CHEK	 Programming of up to 100 parts Graphic display of measurements 	∼ 1 V _{PP} ⊓⊔TTL	4	10-fold (at 1 V _{PP})	RS-232-C/V-24 USB	ND 2104 G
Evaluation electronics forMultipoint inspec- tion apparatusesSPC inspection stations	 Sorting and tolerance checking using tolerance and warning limits Measurement series with min./max. value storage Entry of formulas and combinations Functions for statistical process control (SPC) 	EnDat	8			ND 2108G
 MSE 1000 Modular evaluation electronics for: Multipoint inspec- tion apparatuses SPC inspection stations 	 Modular design Configurable as desired Various interfaces Fast communication with higher- level computer system Universal outputs 	∼ 1 V _{PP} □ ⊥TTL EnDat Analog LVDT HBT	Up to 250	4096-fold	Ethernet	MSE 1000
EIB 700 Evaluation electronics for • Testing stations • Multipoint inspec- tion apparatuses • Mobile data acquisition	 Precise position measurement up to 50 kHz updating rate Programmable measured-value inputs Internal and external measured- value triggers Measured-value memory for approx. 250000 measured values per channel Connection over standard Ethernet interface to higher-level computer systems 	∕~ 1 V _{PP}	4	4096-fold	Ethernet	EIB 741 EIB 742

¹⁾ Optional for ND 287 **42**

Interfaces Incremental signals \sim 11 μ APP


HEIDENHAIN encoders with ~~11 μA_{PP} interface provide current signals. They are intended for connection to ND position display units or EXE pulse-shaping electronics from HEIDENHAIN.

The sinusoidal **incremental signals** I₁ and I₂ are phase-shifted by 90° elec. and have signal levels of approx. 11 μ App The illustrated sequence of output signals—I₂ lagging I₁—applies for the retracting plunger.

The **reference mark signal** I₀ has an unambiguous assignment to the incremental signals.

(D) Further information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

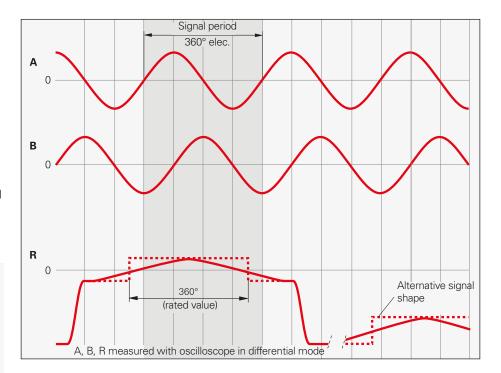
Pin layout

9-pin HEI	DENHAIN c	onnector			_		15-pin D-s For ND 28x			
		Ē			$ \begin{array}{c} 1 & 8 \\ 2 & 9 & 7 \\ 3 & 4 & 5 \\ 4 & 5 \\ \end{array} $		E			4 5 6 7 8 1 12 13 14 15
	Voltage	supply					Incremen	tal signals		
	3	4	housing	9	1	2	5	6	7	8
	4	2	nousing	6	1	9	3	11	14	7
	UP	0V	External shield	Internal shield	I ₁ +	I ₁ -	l ₂ +	l ₂	I ₀ +	I ₀
	Brown	White	_	White/ Brown	Green	Yellow	Blue	Red	Gray	Pink

U_P = Power supply Vacant pins or wires must not be used. Shield on housing


Color assignment applies only to extension cable.

Interfaces Incremental signals ~~ 1 V_{PP}


HEIDENHAIN encoders with $\sim 1 V_{PP}$ interface provide voltage signals that can be highly interpolated.

The sinusoidal **incremental signals** A and B are phase-shifted by 90° elec. and have amplitudes of typically $1 V_{PP}$. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing.

The **reference mark signal** R has an unambiguous assignment to the incremental signals. The output signal might be somewhat lower next to the reference mark.

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

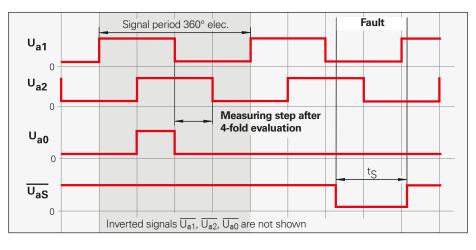
Pin layout

12-pin co	upling, N	123	_	12-pin c	onnector	, M23	_)-sub con	nector 20 or on er	roder	
• (9 8 12 7 11 6 5	<u>j</u> en			8 9 7 12 6 1 5						5 6 7 8 • • • 2 13 14 15
		Voltage	supply				Incremen	tal signals	6		Ot	her signal	S
▣	12	2	10	11	5	6	8	1	3	4	9	7	/
	4	12	2	10	1	9	3	11	14	7	5/6/8/15	13	/
	U _P	Sensor U _P	0 V •	Sensor 0 ∨	A+	A –	B+	B–	R+	R–	Vacant	Vacant	Vacant
·€	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	/	Violet	Yellow

Shield on housing; U_P = Power supply

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used.


Color assignment applies only to extension cable.

Incremental signals

HEIDENHAIN encoders with TLITTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The incremental signals are transmitted as the square-wave pulse trains U_{a1} and U_{a2}, phase-shifted by 90° elec. The reference mark signal consists of one or more reference pulses U_{a0} , which are gated with the incremental signals. In addition, the integrated electronics produce their **inverted signals** $\overline{U_{a1}}$, $\overline{U_{a2}}$ and $\overline{U_{a0}}$ for noise-proof transmission. The illustrated sequence of output signals—with Ua2 lagging Ua1-applies to the direction of motion shown in the dimension drawing.

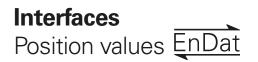
The fault detection signal $\overline{U_{aS}}$ indicates fault conditions such as an interruption in the supply lines, failure of the light source, etc.

The distance between two successive edges of the incremental signals U_{a1} and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one measuring step.

(D) Further information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

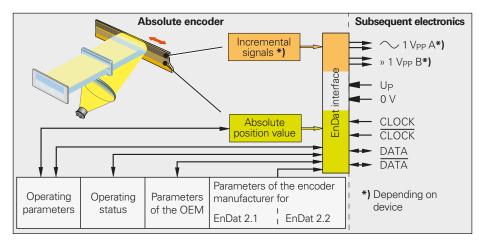
Pin lavout


i ili layot							-						
15-pin D-sub co	nnector				1 2 3 4 9 10 11 12	5 6 7 8 13 14 15	12-pin H	IEIDENHA	AIN conn	ector		8 9 7 12 10 6 11 5 4	23
		Voltage	supply				Incremen	tal signals	i		Ot	her signal	S
	12	2	10	11	5	6	8	1	3	4	7	/	9
	4	12	2	10	1	9	3	11	14	7	13	5/6/8	15
	U _P	Sensor U _P	0V •	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS} ¹⁾	Vacant	Vacant ²
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	-	Yellow

Shield on housing; **U**_P = Power supply

Sensor: The sensor line is connected in the encoder with the corresponding power line. ¹⁾ **ERO 14xx:** Vacant ²⁾ **Exposed linear encoder:** Switchover TTL/11 μAPP for PWT ¹⁾ ERO 14xx: Vacant

Vacant pins or wires must not be used.

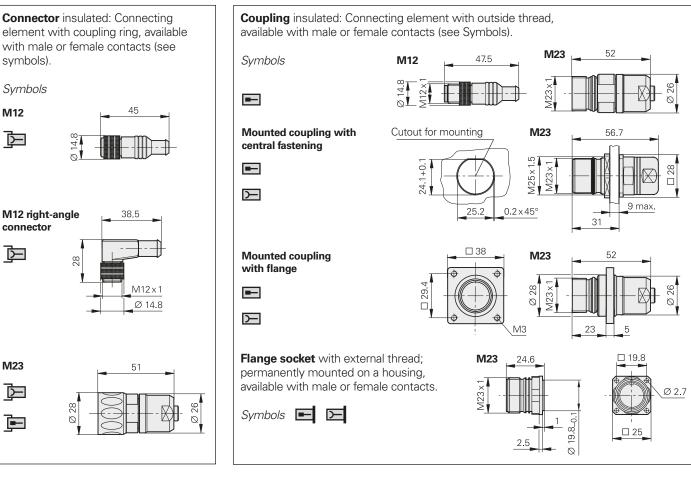

Color assignment applies only to extension cable.

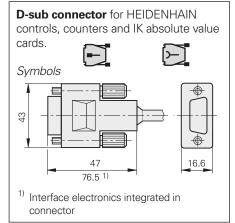
The EnDat interface is a digital, **bidirectional** interface for encoders. It is capable both of transmitting **position values** as well as transmitting or updating information stored in the encoder, or saving new information. Thanks to the **serial transmission method**, only **four signal lines** are required. The DATA data is transmitted in **synchronism** with the CLOCK signal from the subsequent electronics. The type of transmission (position values, parameters, diagnostics ...) is selected by mode commands that the subsequent electronics send to the encoder. Some functions are available only with EnDat 2.2 mode commands.

Ordering designation	Command set	Incremental signals
EnDat01	EnDat 2.1 or EnDat 2.2	With
EnDat21		Without
EnDat02	EnDat 2.2	With
EnDat22	EnDat 2.2	Without

Versions of the EnDat interface

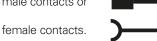
Further information:


Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.


Pin layout

8-pin cou	pling, M12					connector, ma	le	
				3)	For IK 215/PW	/M 20		2 3 4 5 6 7 8 9 10 11 12 13 14 15
		Voltage	e supply			Serial da	ta transfer	
	8	2	5	1	3	4	7	6
	4	12	2	10	5	13	8	15
	U _P	Sensor UP	0 V	Sensor 0 V	DATA	DATA	CLOCK	CLOCK
 €	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow

Cables and connecting elements


General information

The **pin numbering** on connectors is in the direction opposite to those on couplings or flange sockets, regardless of whether the connecting elements have

male contacts or

When engaged, the connections provide protection to IP67 (D-sub connector: IP50; EN 60529). When not engaged, there is no protection.

Accessories for flange sockets and M23 mounted couplings

Threaded metal dust cap ID 219926-01

Accessory for M12 connecting element Insulation spacer ID 596495-01

Cables and connecting elements

Connecting elements

		15-pin
Connector on connecting cable to connector on encoder cable	D-sub connector, female for cable Ø 8 mm	315650-14

			12-pin	9-pin
Mating element on connecting cable to	Coupling (female) For cable	Ø8mm	291698-02	291698-01
connector on encoder cable				
Connector on cable for connection to	Connector (male) For cable	Ø8mm	291697-08	291697-04
subsequent electronics				
Coupling on connecting cable	Coupling (male) For cable	Ø8mm	291698-04	291698-24
Flange socket for mounting on subsequent electronics	Flange socket (female)		315892-08	315892-06
Mounted couplings	With flange (female)	Ø 8 mm	291698-07	291698-06
	F F			
	With flange (male)	Ø 8 mm	291698-31	-
	With flange (male)	Ø 8 mm Ø 6 mm to 10 mm	291698-31 741045-01	-

Adapter cable and connecting cable 1 V_{PP} TTL, 11 μA_{PP}

12-pin M23

9-pin M23

		1 V _{PB} TTL		11 µA _{PP}
PUR connecting cable $[3(2 \times 0.14 \text{ mm}^2) + ($	$2 \times 1 \text{ mm}^2 \text{N} \text{A}_{-} = 1 \text{ mm}^2$			
				-
PUR connecting cable [6(2 x 0.19 mm ²)]; A			_	
PUR connecting cable [4(2 × 0.14 mm ²) + ($4 \times 0.5 \text{ mm}^2$)]; A _P = 0.5 mm ²	Ø8mm	Ø 6 mm ¹⁾	Ø8mm
Complete With D-sub connector (female) and M23 connector (male)		331693-xx	355215-xx	-
With one connecting element With D-sub connector (female), 15-pin		332433-xx	355209-xx	-
Complete With D-sub connector (female) and D-sub connector (male), 15-pin, for ND 28x, EIB 741; only 1 V _{PP} : ND 11xx, ND 12xx		335074-xx	355186-xx	-
Complete With D-sub connector (female) and D-sub connector (female), 15-pin, for ND 780, PT 880, IK 220		335077-xx	349687-xx	-
Cable only	€	816317-xx	816323-xx	_
Complete With M23 coupling (female) and D-sub connector (male), 15-pin, for ND 28x, EIB 741; only 1 V _{PP} : ND 11xx, ND 12xx		309784-xx	_	653231-xx
Complete With M23 coupling (female) and D-sub connector (male), 19-pin for ND 11xx, ND 12xx (not 1 V _{PP}		617513-xx	-	716905-xx
Complete With M23 coupling (female) and D-sub connector (female), 15-pin, for ND 780, PT 880, IK 220		309783-xx	_	368172-xx
With one connector With M23 coupling (female)	▶	298402-xx	-	309780-xx
Complete With M23 coupling (female) and M23 connector (male)		298400-xx	-	309774-xx

¹⁾ Cable length up to 9 m A_P: Cross section of power supply lines

Cables and connecting elements

Adapter cable and connecting cable EnDat

8-pin M12

		EnDat without incremental signals			
PUR connecting cable $[4 \times (2 \times 0.09 \text{ mm}^2)]; A_P = 0.09 \text{ mm}^2$					
PUR connecting cable $[(4 \times 0.14 \text{ mm}^2) + (4 \times 0.34 \text{ mm}^2)]; A_P = 0.34 \text{ mm}^2$		Ø6mm	Ø 3.7 mm		
Complete With connector (female) and coupling (male)	<u>]</u>	368330-xx	801142-xx ¹⁾		
Complete With right-angle connector (female) and coupling (male)	F	373289-xx	801149-xx ¹⁾		
Complete With connector (female) and D-sub connector (female), 15-pin, for TNC (position inputs)		533627-xx	-		
Complete With connector (female) and D-sub connector (male), 15-pin, for IK 215, PWM 20, EIB 741 etc.		524599-xx	801129-xx ¹⁾		
Complete With right-angle connector (female) and D-sub connector (male), 15-pin, for IK 215, PWM 20, EIB 741 etc.		722025-xx	801140-xx ¹⁾		
With one connecting element With connector (female)	<u>}</u>	634265-xx	-		
With one connecting element With right-angle connector (female)	ĿŢ	606317-xx	-		

¹⁾ Cable length up to 6 m

 $A_{\mbox{P}}{:}\ Cross \ section \ of \ power \ supply \ lines$

Q-PLUS LABS

13765-E Alton Pkwy Irvine, CA 92618 (949) 380-7758 www.qpluslabs.com